ImageGenerator
0. Import Library
import tensorflow as tf
import os
import zipfile
import random
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.image as mpimg
1. Prepare dataset
# Downloaded from https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip
local_zip = 'data/horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('data/horse-or-human')
zip_ref.close()
# Directory with our training horse pictures
train_horse_dir = os.path.join('data/horse-or-human/horses')
# Directory with our training human pictures
train_human_dir = os.path.join('data/horse-or-human/humans')
# Now, see what the filenames look like in the horses and humans training directories:
train_horse_names = os.listdir(train_horse_dir) # glob.glob처럼 listdir로 train_horse_dir 안의 이름 볼 수 있음
print(train_horse_names[:10])
train_human_names = os.listdir(train_human_dir)
print(train_human_names[:10])
# >['horse01-0.png', 'horse01-1.png', 'horse01-2.png', 'horse01-3.png', 'horse01-4.png', 'horse01-5.png', 'horse01-6.png', 'horse01-7.png', 'horse01-8.png', 'horse01-9.png']
# >['human01-00.png', 'human01-01.png', 'human01-02.png', 'human01-03.png', 'human01-04.png', 'human01-05.png', 'human01-06.png', 'human01-07.png', 'human01-08.png', 'human01-09.png']
print('total training horse images:', len(os.listdir(train_horse_dir)))
print('total training human images:', len(os.listdir(train_human_dir)))
# >500
# >700
+ 불러온 사진 파일을 시각화해서 보고싶다면
# Parameters for our graph; we'll output images in a 4x4 configuration
nrows = 4
ncols = 4
# Index for iterating over images
pic_index = 0
# Set up matplotlib fig, and size it to fit 4x4 pics
fig = plt.gcf()
fig.set_size_inches(ncols * 4, nrows * 4)
pic_index += 8
next_horse_pix = [os.path.join(train_horse_dir, fname) for fname in train_horse_names[pic_index-8:pic_index]]
next_human_pix = [os.path.join(train_human_dir, fname) for fname in train_human_names[pic_index-8:pic_index]]
for i, img_path in enumerate(next_horse_pix+next_human_pix):
# Set up subplot; subplot indices start at 1
sp = plt.subplot(nrows, ncols, i + 1)
sp.axis('Off') # Don't show axes (or gridlines)
img = mpimg.imread(img_path)
plt.imshow(img)
plt.show()
2. Build a CNN Model
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 300x300 with 3 bytes color
# BatchNormalization 쓰면 성능이 더 향상될 것
# This is the first convolution
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The third convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fourth convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fifth convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
# 512 neuron hidden layer
tf.keras.layers.Dense(512, activation='relu'),
# Only 1 output neuron. It will contain a value from 0-1 where 0 for 1 class ('horses') and 1 for the other ('humans')
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.summary()
# The output shape column shows how the size of your feature map evolves in each successive layer.
# The convolution layers reduce the size of the feature maps by a bit due to padding
# and each pooling layer halves the dimensions.
model.compile(loss='binary_crossentropy',
optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.001),
metrics=['accuracy'])
3. Build an ImageDataGenerator
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale = 1./255)
# Flow training images in batches of 128 using train_datagen generator
train_generator = train_datagen.flow_from_directory(
'data/horse-or-human/', # This is the source directory for training images
target_size=(300, 300),
batch_size=128,
class_mode='binary') # Since we use binary_crossentropy loss, we need binary labels
# Available "class_mode" :
# - "categorical" : 2D one-hot encoded labels
# - "binary" : 1D binary labels
# - "sparse" : 1D integer labels
4. Train the model with ImageGenerator
history = model.fit(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1)
5. Predict on an image
from tensorflow.keras.preprocessing import image
# predicting images
file_name = 'human_1.jpeg'
path = 'data/test/' + file_name
img = image.load_img(path, target_size=(300, 300))
x = image.img_to_array(img)
x = x.reshape(1, 300, 300, 3)
predicted_class = model.predict(x)[0]
print('Predicted class is :', predicted_class)
if predicted_class > 0.5:
print(file_name + " is a human")
else:
print(file_name + " is a horse")
# >Predicted class is : [1.]
# >human_1.jpeg is a human
6. Visualize the layer and filter
# Let's define a new Model that will take an image as input, and will output
# intermediate representations for all layers in the previous model after the first.
successive_outputs = [layer.output for layer in model.layers[1:]]
#visualization_model = Model(img_input, successive_outputs)
visualization_model = tf.keras.models.Model(inputs = model.input, outputs = successive_outputs)
# Let's prepare a random input image from the training set.
horse_img_files = [os.path.join(train_horse_dir, f) for f in train_horse_names]
human_img_files = [os.path.join(train_human_dir, f) for f in train_human_names]
img_path = random.choice(horse_img_files + human_img_files)
img = image.load_img(img_path, target_size=(300, 300)) # this is a PIL image
x = image.img_to_array(img) # Numpy array with shape (150, 150, 3)
x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 150, 150, 3)
# Rescale by 1/255
x /= 255
# Let's run our image through our network, thus obtaining all
# intermediate representations for this image.
successive_feature_maps = visualization_model.predict(x)
# These are the names of the layers, so can have them as part of our plot
layer_names = [layer.name for layer in model.layers]
# Now let's display our representations
for layer_name, feature_map in zip(layer_names, successive_feature_maps):
if len(feature_map.shape) == 4:
# Just do this for the conv / maxpool layers, not the fully-connected layers
n_features = feature_map.shape[-1] # number of features in feature map
# The feature map has shape (1, size, size, n_features)
size = feature_map.shape[1]
# We will tile our images in this matrix
display_grid = np.zeros((size, size * n_features))
for i in range(n_features):
# Postprocess the feature to make it visually palatable
x = feature_map[0, :, :, i]
x -= x.mean()
if x.std()>0:
x /= x.std()
x *= 64
x += 128
x = np.clip(x, 0, 255).astype('uint8')
# We'll tile each filter into this big horizontal grid
display_grid[:, i * size : (i + 1) * size] = x
# Display the grid
scale = 20. / n_features
plt.figure(figsize=(scale * n_features, scale))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
- 위의 사진은 model의 layer와 filter를 시각화해서 보여준 것
summary()로 나온 요약과 정리해보면 같은 내용임을 확인할 수 있다.
model.summary()
'멋쟁이 사자처럼 AI SCHOOL 5기 > Today I Learned' 카테고리의 다른 글
[8주차 총정리] EDA 시각화 (0) | 2022.05.15 |
---|---|
[8주차 총정리] 자동으로 문자형 Label을 숫자로 바꿔주는 LabelEncoder (0) | 2022.05.04 |
[7주차 총정리] AutoML, Keras-tuner for Bayesisan HPO (Colab 권장) (0) | 2022.05.01 |
[7주차 총정리] AutoML, Pycaret 실습 (Colab 권장) (0) | 2022.04.30 |
[7주차 총정리] CNN 이론과 실습 + 데이터 증강(Data Augmentation) (0) | 2022.04.30 |